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Abstract— This paper presents an algorithm that evaluates an extended version of influence diagrams. Chance
variables represent uncertainty about states of the nature through a set of probability measures. This allows
us to model prior ignorance in probability inferences, by not forcing the expert to express knowledge through a
single and precise distribution. Such a representation also implies that there may exist many expected values for
each possible action. In this context, the decision maker must use some criterion to compare the actions in such
set. In this paper we discuss two criteria (Γ-maximix and E-admissibility) through an example.
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Resumo— Este artigo apresenta um algoritmo que resolve uma versão estendida de diagramas de influência.
Variáveis de chance representam incertezas dos estados da natureza através de um conjunto de medidas de proba-
bilidade. Isto nos permite modelar ignorância a priori em inferências probabiĺısticas, não forçando o especialista
a expressar seu conhecimento através de uma única e precisa distribuição. Esta representação também implica
que podem existir diversos valores esperados para cada ação. Neste contexto, o tomador de decisão deve utilizar
algum critério para comparar as ações em tal conjunto. Neste artigo detalhamos dois critérios (Γ-maximix and
E-admissibility) através de um exemplo.

Palavras-chave— Diagramas de influência, tomada de decisão, incerteza, conjuntos credais, critérios de esco-
lha.

1 Introduction

A obvious characteristic of intelligent systems is
the ability to make autonomous decisions even in
uncertain settings. Decision theory provides a for-
mal framework for determining optimal actions;
the notion of optimal is allowed to have a num-
ber of different meanings, the most common being
the maximization of the agent’s expected utility.
However, quite often uncertain scenarios are too
complex to be adequately described by a precise
probability distribution — imprecise probabilities
may arise from an incomplete understanding of
a decision situation, lack of prior knowledge or
empirical data, disagreements between experts, or
lack of resources for a complete elicitation proce-
dure (Walley, 1991). In these cases, automatic
use of maximization of expected utility may lead
to deceptive conclusions (Ellsberg, 1961; Schervish
et al., 2003; Seidenfeld, 2004).

In this paper we are interested in using influ-
ence diagrams to model sequential decision prob-
lems where uncertainty is not necessarily repre-
sented by a single probability distribution. There
are several algorithms in the literature to evalu-
ate influence diagrams in an efficient manner. To
evaluate or to solve an influence diagram is to find
a sequence (or sequences) of decisions that satis-
fies some optimality criterion. The naive solution
for solving an influence diagram (by transforming
it into a decision tree) is unattractive. More so-
phisticated algorithms directly evaluate influence
diagrams (Shachter, 1986; Shenoy, 1992; Jensen

et al., 1994) or reduce it to Bayesian network in-
ference problems (Cooper, 1988; Shachter, 1998;
Nielsen, 2001; Shachter, 1999). In this paper we
focus on the algorithm presented in (Nielsen, 2001;
Shachter, 1999), extending it to deal with uncer-
tainty represented by set of probabilities.

In the presence of sets of probability distri-
butions, one may think of maximizing either the
minimum expected utility (Γ-maximin) (Berger,
1985; Gilboa and Schmeidler, 1989), or the max-
imum expected utility (Γ-maximax ) (Satia and
Jr., 1973), or a mixture of both according to
a “caution variable” representing the degree of
ambiguity aversion (Γ-maximix ) (Utkin and Au-
gustin, 2005). Another possibility is to consider
the set of admissible actions, from which we elim-
inate the dominated (non-optimal) ones. Accord-
ingly, some criteria of admissibility are: interval
dominance, maximality and E-admissibility. Al-
gorithms for these criteria can be found in (Kikuti
et al., 2005; Utkin and Augustin, 2005).

Our main contribution in this paper is an al-
gorithm to evaluate influence diagrams with im-
precise probabilities. Section 2 briefly reviews the
basics of set of probabilities and influence dia-
grams; in particular, we are going to detail the re-
lationship between influence diagrams and Credal
networks. Section 3 presents the algorithm for
evaluating influence diagrams and how it is linked
with the criteria of choice. From the criteria
above, we present two algorithms: Γ-Maximix and
E-Admissibility. An example and the conclusions
are presented at Sections 4 and 5 respectively.



2 Background and problem statement

Decision theory with imprecise probabilities is
caracterized in the following way: an individual
is faced with several alternative courses of ac-
tions A = {a1, . . . , am}. The consequences of
every action depend on the state of nature Ω =
{ω1, . . . , ωn}. An outcome cij is associated for
choosing action ai in state ωj .

The uncertainty (or ambiguity1) over the
states of the nature is represented by credal sets
(Levi, 1980). A credal set K(X) is a set of
probability distributions for a random variable
X : Ω → R, which takes different possible values
on Ω. We assume that all variables are categori-
cal and the credal sets are closed and convex with
finitely many vertices — K(X) is represented by a
polytope in R

n space, where n is the cardinality of
the event space for variable X. Given a credal set
and a real-valued utility function u : (A×Ω)→ R

defined over outcomes, one may compute the set
of expectations by:

E[u(ai)] =

n∑

j=1

p(xj)u(cij) (1)

Equation 1 results in a set of expected util-
ity values because p(xj) ∈ K(X = xj) may have
more than one probability measure associated
with it. The notation p(xj) is a shorthand for
p({ω ∈ Ω : X(ω) = xj}). This set of expecta-
tions is usually represented in terms of interval-
values [E[u(ai)] , E[u(ai)], where E[u(ai)] is the
lower expectation (min E[u(ai)]) and E[u(ai)] is
the upper expectation (max E[u(ai)]). Lower and
upper probabilities are defined similarly (Giron
and Rios, 1980; Walley, 1991).

These concepts describe a single stage deci-
sion problem. In this paper we are considering
dynamic choice situations, i.e., sequential decision
problems represented by influence diagrams where
decisions are made after the resolution of some un-
certainty.

An influence diagram (Howard and Matheson,
1984) is a graphical representation of uncertainty
quantities and decisions that explicitly reveals
probabilistic dependence and the flow of informa-
tion. Previous researches (Shenoy, 1992; Jensen
et al., 1994) have applied methods for probabilis-
tic inference into sequential decision problems.
In fact, an influence diagram can be seen as a
Bayesian network (Pearl, 1988) augmented with
decision nodes and value nodes (Cooper, 1988).
When we have chance nodes representing credal
sets, we can say that the influence diagram is a
credal network augmented with decision and value
nodes. A credal network is a directed acyclic

1Ellsberg defines ambiguity as the vague or unsure prob-
ability judgments that a decision maker assigns to a par-
ticular problem (Ellsberg, 1961).

graph where each node of the graph is associated
with a variable Xi and with a collection of con-
ditional credal sets K(Xi|Pa(Xi)), where pa(Xi)
denotes the parents of Xi. A conditional credal
set is obtained by applying Bayes rule to every
distribution in a credal set. We adopt the fol-
lowing definition of independence, usually referred
to as strong independence: two variables X and
Y are strongly independent when the credal set
K(X,Y ) has all vertices satisfying stochastic in-
dependence of X and Y (that is, all vertices fac-
torize as P (X) P (Y )) (Couso et al., 2000; Coz-
man, 2000). A marginal inference in a credal net-
work is the computation of lower/upper probabil-
ities in an extension of the network.

An influence diagram is represented by a di-
rected acyclic graph G = {V, E} with V patitioned
into three subsets: decision nodes (rectangles),
chance nodes (circles or ovals) and value nodes
(diamond shapes). Each decision node contains a
set of possible actions, each chance node is asso-
ciated with a set of conditional probability tables
and each value node is associated with a utility
function. We assume that the influence diagram
can have more than one value node in order to
allow dynamic programming and that the total
utility is the sum of the local utilities (Tatman
and Shachter, 1990). Arcs into chance nodes in-
dicate probabilistic dependence (conditional arcs)
and arcs into decisions specify the information
available at the time of the decision (informational
arcs).

In influence diagrams, there must be a to-
tal ordering of the decision nodes indicating the
order in which the decisions are made VD =
{D1, . . . ,Dn}. As a consequence of this ordering
and the set of informational arcs, it is possible to
partition the set of chance variables into a collec-
tion of disjoint subsets VC = {C0, . . . , Cn}, where
Ci denotes the chance variables observed between
decision Di and Di+1. This induces the partial
order ≺ on VC ∪ VD : C0 ≺ D1 ≺ C1 ≺ . . . ≺
Dn ≺ Cn. A policy δi is then defined as a map-
ping from the past of Di (pa(Di) ∪

i−2

j=0 Cj) to the
state space of dom(Di), i.e., a policy specify an ac-
tion given all observations made prior to making
decision in Di. A strategy s is an ordered set of de-
cision policies s = {δ1, . . . , δn} for each Di ∈ VD.
The optimal strategy s∗ = {δ∗1 , . . . , δ∗n} depends on
the criteria of optimality adopted by the decision
maker. To solve an influence diagram amounts to
determine the optimal strategy and compute the
expected utility for adhering to this strategy.

The decomposition method of (Nielsen, 2001)
proposes the solution to the problem by decom-
posing the influence diagram into a collection of
smaller influence diagrams. The decomposition
produces an influence diagram for each decision
variable of interest, and each of this influence di-
agrams contains exactly the variables necessary



and sufficient for determining an optimal policy
for the associated decision variable; hence, the in-
fluence diagram can be solved independently of
each other.

Starting with the last decision, we can obtain
the expected utility by solving the Equation 2.

E[Dn = d] =
∑

XQn

P (XQn
|XEn

)u(d,XQn
) (2)

The XQn
in Equation 2 is the set of queried

variables, XEn
is the set of evidences (observed

variables), and u(d,XQn
) is the utility function.

To calculate the expected utility for an optimal
strategy strategy s∗ we expand the expression
above to:

E[s∗] =
∑

C0

opt
D1

. . .
∑

Cn−1

opt
Dn

∑

Cn∏

X∈VC

P (X|pa(X))
∑

U∈VU

u(pa(U))(3)

In our algorithms, the strategies are repre-
sented by multilinear programs — non linear pro-
grams whose objective function and constraints
involve the variables through sum of products —
and are solved using a method of Reformulation-
Linearization (Sherali and Tuncbilek, 1992).

3 An influence diagram algorithm and

two criteria of choice

This section presents an algorithm for evaluat-
ing influence diagrams based on Shachter’s algo-
rithm. This algorithm determines the variables
required to solve the influence diagram with re-
lation to the decision node Di (∀i, 1 ≤ i ≤ n)
(Shachter, 1998; Nielsen, 2001). The Algorithm
1 allows not only a policy for each decision node
(as in the case with precise probabilities), but also
a set of policies classified as admissible according
to a previously defined criterion of optimality. As
the result of the evaluation, the algorithm returns
a strategy (or a set of strategies).

Lines 1 to 5 decompose the influence diagram
I into a set of smaller influence diagrams. The
array I contains the information necessary and su-
ficient to evaluate each decision node separately.
The function GetValueNodes returns the set of
value nodes relevant to decision Di (the set of
value nodes to which there exists a directed path,
excluding informational arcs, from Di in I). A
proof that this function returns the relevant set
can be found in (Nielsen and Jensen, 1999). The
same argument can be used to show that this is
true also to chance variables with imprecise prob-
abilities. The function GetD-Connected returns
the set of variables that are d-connected to a vari-
able in Vi given Di and its predecessors. In this

Algorithm 1: Evaluate

Input: An influence diagram I
Output: A set of admissible strategies S

foreach Di, i ← N to 1 do1

Vi ← GetValueNodes(I, Di);2

Di ← GetD-Connected(I, Di, Vi);3

Reqi ← Di ∩ Pred(I,Di);4

I[i] ← Vi, Di and Reqi ;5

foreach Di ∈ I, i ← N to 1 do6

∆ ← ∅;7

foreach action d ∈ Di do8

foreach configuration j of Reqi do9

δij
← Multilinear program with10

objective function given by
Equation 3 s.t. constraints on
probability values of variables in
I[i];
∆ ← ∆ ∪ δij

;11

Admissible[i] ← Criterion--X(∆);12

S ← Enumeration of all admissible13

strategies;
return S;14

step we prune the unnecessary nodes to evaluate
the expectations of the actions in Di. A discus-
sion of irrelevance and independence relations in
credal networks can be found in (Cozman, 2000).
The variable Reqi contains the set of variables re-
quired for Di.

Lines 6 to 12 determine the admissible policies
for each smaller influence diagram in I and eval-
uate it. The Admissible array at line 12 contains
the admissible set of policies determined by the
choosen criterion. The function Criterion—X is a
generic function that must be replaced by some
properly implemented criteria of optimality. If we
choose an ordering criterion, we always have a pol-
icy for each decision node; if we choose an admis-
sibility criterion, we would have in the worst case
m ∗ n policies to consider, where m is the number
of possible actions available at the decision node
and n is the number of all possible configurations
of the necessary variables to the decision node. At
line 13 we have the enumeration of all strategies
s = {δ1, . . . , δn}, i.e., we take one policy for each
decision node and builds a strategy.

The subsections below give more details about
two of criteria of optimality. Both criteria demand
to solve a linear number of multilinear programs,
which computational complexity depends on the
structure of problem.

3.1 Γ-Maximix criterion

With imprecision on probability values, we have
an interval of expectations such that we can adopt
a criterion of choice that looks only at the lower



expectation (Γ-Maximin), or looks only at the up-
per expectation (Γ-Maximax ) or looks at both,
lower and upper expectations, suggesting a deci-
sion based on a mixture of both values according
to a caution parameter η reflecting the degree of
ambiguity aversion (Γ-Maximix ) (Utkin and Au-
gustin, 2005).

The optimal choice δ∗ for Γ-Maximix is:

δ∗ = max(ηE[δi] + (1− η)E[δi])

The more ambiguity averse the decision maker
is, the higher is the influence of the lower interval
limit of the generalized expected utility2 (Utkin
and Augustin, 2005).

This criterion is described in algorithm below.

Algorithm 2: Criterion–Γ-Maximix

Input: A set of policies ∆ and a
parameter η reflecting the degree
of ambiguity aversion

Output: The optimal strategy δ∗

δ∗ ← null;1

hme← −∞;2

foreach δi ∈ ∆ do3

mixed← ηE[δi] + (1− η)E[δi];4

if mixed > hme then5

δ∗ ← δi;6

hme← mixed;7

return δ∗;8

3.2 E-admissibility criterion

Now let’s consider that the set of actions cannot
be completely ordered. Then it is possible to say
that one action is admissible if its upper expecta-
tion is greater than or equal to the greatest value
of the lower expectation among the actions (this
criterion is known as interval dominance); or we
can say that one is admissible in a pairwise com-
parison if it is not worst for all probability value
(maximality); or we can adopt the concept of E-
admissibility, which restricts the decision maker’s
admissible choices to those that are Bayes for at
least one probability measure P in the relevant
credal sets. That is, given a choice set ∆ of feasible
policies and a credal set K representing imprecise
beliefs, the policy δ ∈ ∆ is E-admissible when, for
at least one P ∈ K, δ maximizes expected utility
(Schervish et al., 2003):

For each policy δ, we are interested in finding
a probability distribution for which δ is optimal in
the standard expected utility sense. If this prob-
ability distribution exists, then δ is E-admissible.
In other words, the policy δi ∈ ∆ is E-admissible
if there exists a P ∈ K such that for all δj ∈ ∆,

2Note that η = 1 corresponds to strict ambiguity aver-
sion (Γ-Maximin) and a η = 0 corresponds to a maximal
ambiguity seeking (Γ-Maximax)

δj 6= δi, we have E[δi − δj ] ≥ 0. These (multi-
linear) constraints must all be satisfied to show
that δi is E-admissible; if the constraints cannot
be satisfied, then δi is not E-admissible. We thus
obtain the following algorithm, where LR is a list
of constraints produced by pairs of strategies:

Algorithm 3: Criterion–E-Admissibility

Input: A set of policies ∆
Output: A set of admissible policies

n← Number of policies in ∆ ;1

for i← 1 to n do2

LR← null;3

for j ← 1 to n do4

if i 6= j then5

LR← LR ∪ E[δi − δj ] ≥ 0;6

Q← set of all constraints on7

probability values plus LR;
P ← arg maxp E[δi] s.t. constraints on8

Q;
if P 6= null then9

δi.admissible← true;10

else11

δi.admissible← false;12

return All alternatives not marked as13

false;

Lines 3 to 6 generate all constraints that are
required to satisfy E-admissibility of a policy δi,
and line 7 collects constraints on probabilities.
Line 8 requires the solution of a multilinear pro-
gram. The whole algorithm depends on the num-
ber of policies, and not directly on the number of
distributions in the credal sets. Even though the
properties of the credal sets certainly affect the so-
lution of the relevant multilinear programs, there
is no need to represent the credal sets explicitly, or
to enumerate their vertices (necessary steps in al-
gorithms previous than (Kikuti et al., 2005; Utkin
and Augustin, 2005). In a sense, the complexity
of credal sets is “hidden” within the multilinear
programs.

4 Example

Consider the classic oil wildcatter problem (Raiffa,
1968) depicted in Figure 1. An oil wildcatter must
decide whether to drill or not to drill. The cost
of drilling is $70K. If he decides to drill, the
hole may be soaking, wet or dry (with a return of
$270K, $120K or $0 respectively). Suppose that
the prior probabilities for soaking, wet and dry
are given as interval-values: [0.181, 0.222], [0.333,
0.363] and [0.444, 0.454] respectively. At the cost
of $10K, the oil wildcatter could decide to take
a seismic soundings of the geological structure at
the site. The specifics of the test are given in Ta-
ble 1.

Applying Algorithm 1, we have the influence



Test Amount of Oil (O)
Results (S) dry wet soaking

no (ns) 0.6 0.3 0.1
open (os) 0.3 0.4 0.4
closed (cs) 0.1 0.3 0.5

Table 1: Probabilities of seismic test results con-
ditional on amount of oil.

D

S O

U1 U2

T

Figure 1: Influence diagram for the oil wildcatter
problem.

diagrams depicted in Figure 2 to evaluate (infor-
mation at array I). The decision T represents the
decision of taking or not the seismic test and it is
to be made based on no information, that is, we
have just two policies to analyse (δT = yes and
δT = no). The decision D represents the decision
of drilling and it is to be made conditional on S and
on T (required nodes are shaded), thus a policy for
D specify how to act in 6 possible configurations
of the required nodes.

D

S O

U 2

T

1U

T

(D)(T)

Figure 2: Decomposition of the influence diagram
in Figure1 into two smaller influence diagrams.

The expectation to δD is obtained by the mul-
tilinear program below:

EU [δD] =
∑

S

P (S)opt
D

∑

O

P (O)P (S|O, T )

P (S)

U(D,O) s.t.:

constraints on P(O) and P(S|O,T)

Table 2 shows the expected utility function
over variables T, S and D.

Applying the criterion Γ-Maximix with η =
1.0 (we are just looking the lower expectations),
we have that the optimal policy is to take the seis-
mic test and not drill only if it indicates no struc-
ture. The local expected utility computation for

D S T lower upper
no – – 0 0
yes – no 21.77 30.77
yes ns yes -24.85 -24.01
yes os yes 27.22 30.05
yes cs yes 81.04 86.85

Table 2: Lower and upper expected utility for D

δ∗D is ≈ $28.87K. The total utility is the sum of
the local utilities. For the optimal strategy s∗ =
{δ∗T , δ∗D} we have EU [s∗] = EU(δ∗T ) + EU [δ∗D] =
−10K + 28.87K = $18.87K.

Applying the criterion E-admissibility we
have obtained the same optimal strategy (coin-
cidentally). This can be easily verified if we note
that the constraints of the policies suggesting not
to drill cannot maximize the expected utility for
any probability value (except for no structure in
seismic test). The expectations for this criterion
is E[s∗] = $18.86K and E[s∗] = $24.16K.

5 Conclusion

In this paper we have presented an algorithm to
solve influence diagrams where chance nodes are
associated with sets of probabilities. The algo-
rithm is based on graph-theoretic properties of
Bayesian and credal networks. The algorithm
solves the original influence diagram by decom-
posing it into smaller and independent influence
diagrams.

The algorithm was specialized to deal with op-
timality criteria: Γ-maximix and E-admissibility.
Both criteria require use of multilinear program-
ming technique for finding optimal actions. In the
E-admissibility criteria the decision maker is al-
lowed to have more than one optimal action; this
may be computational costly if the number of ad-
missible actions in each decision node is large and
the influence diagram is decomposed in many sub
diagrams.
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